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ABSTRACT 

The objective of this thes is re~arch is to develop a B,Kk-Propagation Neural Network 

(B N"'i ) to contro l certain classes of unknown nonlinear systems and explore the network's 

capabilities. The structure of the Direct Model Reference Adaptive Controlle r (DM RAC) 

for Linear Time lnvariam (L TI) systems with unknown parameters is tirst analyzed and then 

is extended to nonlim:ar systems by using BNN. Nonminimutn phase systems, hoth linear 

and nonlinear, have also been considered 

The analysis of lh(". experiments shows that the BNN DMRAC gives satisfa<.:tory 

results for the representative nonlinear systems considered, while the conventional1east-

squares estimator OMRAC fail s, Based on the analysis ano cx;pcrimemal findings, some 

gC!ll'rai conditions an: shown to be required to ensure that this technique is satisfactory 

These conditions are pn:sented and discussed. It has been fou nd that furt her research needs 

to be done for the nonminimum phase case in order to guarantee stability and tracking. 

Also, to establish this as a more genrral and significant control tet:hnique. further 

research is required to develop more specific rules and guidelines for the BNN design and 

tralmng 
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I. IYIRODUCTION 

In the pasllhrre Jec~de~, major advan(:e~ have been made in adaptive idtntifio.;ation 

and control for ilientifyillg and COIllJolliJlg Linear Time Invariant LTI sy,tcills with ;lI1known 

piUameters The choice of the identifier and controller srructurc.'i is hased 011 well established 

Jesuits in systems theory. Tht adaptive control theory is then improved and aWlied (0 

nonLinear dynamic plams employing neural network.'i .vjlh the right choice of the identifier 

and (onrrolkr ~tlllClilre , 

1l~ ohjcclivc of this thesis resra:a.:h is to dnelop a Ba;;k-Propagalion Neural Netwurk 

(BNN : to control certain classes of unknown nonlinear dynamical systems. Initial analysis 

is Jire<:teu towards a Direct l\:lodcl Reference Adaptive Controller {D\1RAC) for an 

unknown L Tl system. Results of the simulation art displayed tor this system. The same 

anaJy.'iis is then perfonned for an wlk!lO\Vn nonmilli.tnlllll phase system. The adaptive corlllol 

theory is thrn applied lO nonlinear unknown systems hy employing neural ne(wurk.'. 

Basically. fo ur nonlinear models have hcen analyzed and simulated. Lastly, the adaplive 

,-ontrol all'orilhm is tried with Ilonlin t ar Imk.nown nonrninimum phase syStems al'ain by 

rmploying neuraJ networks. 

In what follow" ChHpter II presents the analysis ot a DMKAC for all unknown ITI 

systrm and for an unknown nonminimum phase I.TT system_ Chapler T!l concnn, nellr~1 

network;; in general ~nd adaptive control ot nonlinear plants employing nruHllllrtw(Jfks 



Charter IV is composed of the simulations thaI have been carried out. The result'i, 

cnnclusions and discussion., are given in Charter V 



" . ADAPTIVE CONTROL OF UNKNOW'I t Tl SYSTEMS 

A. ,\DAPTlVE CONTROl. I~ GF:~F:HAL 

The search for lksign tcchniquts to control systems with unknown paran1Clcrs has 

rlrawn much attention in recent year,~. Adaptive control i, currently on('. of the most 

commonly used methods in the conn-olaf systems with uncertain dynami(;s. Several 

applications of adaptive control such as ship stcering, aircraft conL!'ol, robot manipuiarion, 

(;hemi<..:aJ pnx:ess control and bio-medical tngineering have t~tn perfonned in the pa'it years 

[Ref.IJ. The general strunure of an adaptive control system is shown in Figure I 

[)llriJlg the dev~lopmem of adaptive controL t\VO maJor classes have. ~merw~d: k arning 

systems. whi<..:h lead to the introduction of learning automatons in the controlliteriltu!'e, and 

adaptive systems using a model reference, known as model refer'-'Ilce adaptive \:ontrol 

systems (Dr-.-1R.A,C). T11e design of the adaptation algorithm in DMRAC is based on stahility 

theory since the stability of the closed loop ~ystem is a fundamental n:quirement in the 

design of <..:ontrol systems 

In adaptive control of an unknown linear l.ime invariant (LTl) system, unknown 

pinJilieters are estimated by an on-line estimator. Based on the estimated parameters, an 

~ ,--j~ql1i\l.e design can be achievrd to implemen t the chosen control law. This prll(;ess 

~'ommonly rekrrrd to as i lldirect adapfi l-'e COl/fro!, Figure 2 shows t ile structure of an 

indiren adaptive CllrltToi ,~yStem 



On the other hand, it i~ possible to parametrize the unknown system in terms of the 

co ntrol parameters (e.g. the state~feedback gai ns) to implement the chosen control law. In 

this case, the estimation and the control proce~se~ are carried on together. This alternative 

approach is called direct adaptive control. Figure 3 shows the SlIUclllre ot a direct adaptive 

contro l system 

CBOSJ:N CONTROL LAW 

Figure 1. General Adaptive Control Structure 

The mai n idea in an moods is the parameter estimation. When estimating the 

parameters , the uncertainties must be expressed linearly in terms of a set of unknown 

parameters 

In lin",ar systems, the regn:ss ion Gin be adequately used to obtain the state 

measuremt:nts or observations from the systems, with the unknown parameters as 

coefficients. However, in nonlinear systems, nonlinear funct ions of the measurements or 



obsnvations ar~ generally rcquinxl. With unknown nonlinear systems, these nonlinear 

fUllCliolls cannot be $pecifi~d mOSt of the time. So, the usc of neural networks as generic 

parametri<:: modds is highly reconuncnded in such cases 

CHOSEN CONTROL LAW 

Figure 2 .lndirect Adaptive Control Algorithm 

Fi!JU-re 3. DiIect Adaptive COllLrol Algorithm 



Bdore developing a neural network based direct model reference adaptive controlkr 

for unknown nonlinear sy.~tems, the design of a DMRAC for unknown LTJ systems will be 

presented 

B. A~ALYSIS OF A DMRAC FOR U~KNOWN L TI SYSTEMS 

Consider an L TI system 

A(q)y(t) = B(q)u(t), (2.1) 

with A(q) and B(q) being polynomial operators I with unknown coefficient<;. For 

DMRAC de<;ign, it is assumed that: 

l. A(q) is monic and degree[A(q)]=n is known 

2. The transfer function B(q)lA(q) is strio:.:tly proper and the relative degree is known. 

The goal of the controller is to move the closed loop system's dynamics such that 

(2-2) 

where D(q) is the arbitrary monic stable characteristic polynomial operator uf the desired 

system. arld v(t) is an external input. The general structure of DMRAC is shown in 

Figure 4. 

By employing a steady-state Kalman filter. observer-state-feedback system yields the 

fol iowing structure for the feedback controller, 

'The argument q of the polynomial operators is the forward time-,hift operator in discrete 
time modelling. 



u(t) = h(q) u(t) + k(q) }<o + '1t), 
f%(q) f%(q) 

(23) 

wh~re a(q) is the monic characteristic polynomial operator of the observer. It I:an be 

lhosen arhitrarily, provided that the roots are in the stable region. The polynomial 

operators h(q) and k(q) are the feedhack polynomial operators of the lmknown system. 

REFJ:RENCJ: m t 
MODEL 

Figure 4 . General Snucture of the DMRAC 

By using partial state representation. equation (2- J) can be reconstructed as 

A(q)z(t) = II(t), 

y(t) = B(q)z(t). 
(2- 4) 



Combining equations (2-3) and (2-4) yields Lhe following 

[a(q)A(q) -/(q)A(q) - k(q)B(q)JJtt) " a(q)l(t), 

)(1) ~ JJ(q),') 

To obtain the desired closed loop behavior, the Diophantine equation 

II (q)A(q) - h(q)A(q} - k(q)B(q) = J..1I(q)IXq)B(q) , 
b, 

(2-fi) 

shou ld be satisfied so that the closed loop system poles coincide ei ther with those of lhe 

rderem:e model or with the system's zeros. The factor lib! is needed to ensure that the 

right side of the t:quation is monic and the roots of B(q) are assumed to be inside the unit 

circle (i .e. minimum pha se) [Ref.2J. 

In equation (2-6), the polynomial operators A(q) and B(q) are assumed to be relatively 

co-prime (i.e. there is no pole-zero cancellation) which guarantees a unique solution for h(q) 

and k(q). 

Since A(q) and B(q) are unknown polynomial operators, an estimator is required to 

estimate the system parameters on-line, based on the generic recursive regression analysis 

rtw regression equation, 

a (q) u(t) " h(q)u(t) +k(q)y(t) + !....a(q)IXq)y(t) , (2-7) 
b, 



is obtJinrd by using partial state transformation 

Using q as the forward time-shift operator, the filtered input and output signJls can be 

ddined as 

(2-8) 

Equat ion (2-7 ) .:an be eJ<pressed in J more convenient form as follows : 

where TI is the order of the unknown system and r is the number of the c losed loop 

sy,>tem poles which must be placed to match those of the rderence model. Equation (2-9) 

can be represented in a marriJ< formation as 

h, 

where uF(t_r_l) h, 

u f (t-r-2} 

h(M_I, 

u F(t-r-II+l) " 
(2-1 0) 

8 0 = 
<l>(t} = yF(t-r- l ) k, 

yF(t-r-2) 

k(M _1I 

yf(t-r-II+l) ~ 
q -'D(q)y(t) b, 



and, 

By using the linear regressor 41(1) Jnd recursive estimation of 8 0 as 

8 (1+1) " 8(1) + P(1)~(t) (u(l-r) - ~r(t) 8(1)] 
J + ~r(l)p(I)4I (I) 

P(I+I) = P(I) . P(t)~(t)4Ir(t)p(t) , 

J. ~r(t)p(t) ~(t) 

(1-1 1) 

(2 - 12) 

the unknown parameters of the system arc estimated. Hence, the control equation (2 -3) 

can be rewritten as 

Equation (2- 13) can be represented as 

u(1) = 4I T/I) 8 0, 

u'(I-".1) 

~ P)" y'-(I- l ) 

y F(t-2) 

1 0 

(2-13) 

(2 · 14) 



It can be noticed that all the eqllations in both estimation and control phases are the 

same except for the last dement iJI the vector e>(t)and e> /I}. Hence. this identical structure 

of the estimator and the controller prevents the unnecessary intermediate control design 

I..:alculation~ and ~peeds up the control process 

Figure 5 illustrates the estimation and the control algorithm of the DMRAC where 

e(t) is a linear associative memory with recursive estimation to mjl1im.i7.(: the mean square 

errors between u(t) and ;¢t) = e>f(t)@(t) 

<1>(1) 
OBSERVER 

Figure 5. E,timation and Control Algorithm of the OMRAC 

As an illustration. Appendix A contains a numerical example of the design of a 

Ot>lRAC for an unknown minimum phase LTI system 

11 



C. ANALYSIS OF A OMRAC FOR UN K.!""lOWN NONMINIMUM PHASE tTl 

SYSTEM 

Consider the L 11 system in section B, with polynomial operators A( q) and B( q) which 

cause the system to be noruninimum phase (i,e. at leas! one zero outside the unit circle in z­

domain), 

Defining the polynomial operators A(q) and B(q) 

(2- 15) 

and using the same structure fo r the feedback controller in equation (1-3), the following 

Diophantine equation 

h(q)A(q) .. Jqq)B(q) " u(q)[A(q) - P"(qH, (2- 16 ) 

is obtained. a(q) is the monic characteristic polynomial operator of the observer. It is 

also arbitrary and stable. P'(q) is the stable arbitrary characteristic polynomial of the 

desired closed loop system 

Ln nonminimum phase systems. for estimating h(q) and k( q), the filtered partial state 

/"(1) must be replaced by an estimate in tcrms of the available signals UF(t) andy(t). This 

l:an be donc using the Bezout identi ty as follows: 

b(q)B(q)" c(q)A(q) : J, (2- 17) 

12 



which ho lds provi<ied A. (q) and B (q ) arc mutually co-prime polynomials. Hence, defin in g 

b(q) and c(q) as 

12- i8) 

Equation (2-10) can be rC""Titten as 

u F(t - r - J) 
h, 

u F(t -r-2) 
h, 

u F(t- r - n+} ) hl~_I; 

).F(t-r-l) k, 
(2-19) 

yF(I_r_2) k, 

y ' (t- r - /J +} ) kl ~ _ /) 
<I> ( t) = 9 u -" 

b, liF(t- r - J) 

u'(t-r-2) b, 

It-(l -r-n+J) b. 

y-fC(I _r_l) 
" 

y--+"(t - r-2) 
" 

y-fC(t-r-n+ l) '. 

13 



where 

ijf(J) " r(q)fl(q)Uf(t), 

y-+'(t) " p.(q)g,(q)yf(t). 

So. the algorithm in order to obtain a DMRAC for unknown L TI system is developed 

by using an adaptive pole placement algorithm for unknown non minimum phase L TI 

systems. 

Using equation (2- 17), thl;.': state z(t) can be estimated as 

z(t)" c{q)u(t) + b(q)y(l) , (2·20) 

whi.;h implies that b(q) and c{q) are the parameters of the observer 

Appendix B contains a numerical exampk oft/II;.': design of a DMRAC for an unknown 

nonminimum phase L TI system 



III. NEURAL NETWORKS IN ADAPTIVE CONTROL OF 

UNKNOWN NONLINEAR SYSTEMS 

A. NEURAL NETWORKS IN GENERAL 

Neural networks arc composed of many simple elements operating in paralleL These 

elements are inspired by biolog ical nervous systems. The network fUI1(;tion is determined 

largely by the con nections between the e lernenls [Ref.3] 

Neural networks have been uained to perform complex functions in various fields of 

applicaTions including patten! recognition, identification, classification, speech. vision and 

control systems. Nema! nrtworks have been ,htdied for many years in the hope of achieving 

human-like perfonnam.:c in the field s of speech and image recognition [Ref.4J .Today neural 

networks can be rrained to solve problems that arc unsuitable to conventional computrrs 

rReU] 

A neural network is usually a layered network consisting of an input layer, an output 

layer and at least ont: layer of nonlinear processing elemellls. The nonlinear processing 

elements. which sum incoming signals and generate output signals according to some 

predt."oJined function are called neurons. The neurons are connected by terms with variable 

weights. The output of Olle nellJOIl multiplied by a weight becomes the input of an adjacent 

neuron of the next layer. 



A si ngle neuron with n inputs is shown in Figure 6. The individual input xU;, 

weightt'.ct by the element w(lJ) of the matrix w, are summed to form the weighted inputs to 

the rransfer function r The neuron has a bias h and an output y given by 

Y'" r d:: w(l,j) x(j)+hJ. 
j -I 

(:\ -1) 

As in equation (3-1 ), the transfer function net input is the sum of the weighted inpu ts 

and the bias b. This sum is the argument of the transfer function. The weight vector w, and 

the input vector x can be represented as 

w '" [ -.«./,1) w(1,2) ..... w(l,n) 1 • [
xi})1 
x(1) 

X " • 

xin) 

(3·2) 

I(l) .... (1.1) 

I(Z) 

I(.) 

Figure 6. A Single Neuron Model 



Two or mOTC of these neurons may be combined in a layer and a particular network 

might contain one or more sw..:h layers . First consider a single layer of neurons where eactl 

clement of the input vector x is connected to rach neuron input through a weight matrix II-' 

In this case, there are m neurons and each of them has a surmner and the surnmer outputs 

form an m element vector z. The transfer function net input is the sum of its appropriately 

weighted inputs ann bias h, At the end, all nClUon outputs form an m element output vcctor 

y . A one layer neural network with n inputs and m neurons is shown in Figure 7. So, 

CljUiHion (3- 1) can be represented for this case as 

yo r Itt"'iJ)xfj).h(i)]. (3 -3) 
;-1 )"1 

All weights call be represented in matrix fannat as 

[

",1,1) ",/~) 

w(2,l) '4(2,2) 

w(m.J) )f.(m,2) 

"'1,nJ[ 
K{2,n) 

...-(m,n) 

0-4) 

where each row represents the weights of one layer 

A network can have several layers where each layer has a weight matrix w. a bias 

vector b. a weighted input z to the transfer function, and an output vector y. Layers whose 

outputs arc the neNiork's outputs are called oUTpw!ayers. All other layers are called hiddell 

!ayf'rs. Commonly an input vector is presented to a network. the outputs are calculated and 

1 7 



an algorithm is applied to detennine the weight element changes. However. one may want 

to apply more than one input vector simultaneously and get the network's response to each 

one of them. This operation is called batching and this will not be part of this thesis. 

1:(1) 

1:(1) 

1:(.) 

Figure 7. A one Layer Neural Network 

Initialization of the weights and bias dements to small positive and negative values 

provides enough variation in the weights and biases so that neurons in the network stan OUI 

with a range of behaviors that can be taken advantage of by the learning rule. 

There are several learning rules such as Hebbian. InstaL Kohonen. Outstar learning 

rules [Ref.3]. Among the most common learning rules is hackpropagmion which adjusts the 

1 8 



wrights ano biases of the network in order to minimize the mean ~uared error criterion. 

This is a gradient algorithm ano it is done by continually adjusting the values of the weights 

and biases in the direction of the gradient of an appropriate cost function 

The most distinctive and ap(X:aling Ie<lture of many neUf<l1 networks is th<lt they learn 

byexampk.s. 

Currently. thr most popular and coaunonly used neural networks for control system 

design is the Back-Propagation Neural Networks (BNJ\) which is discussed in the following 

B. ANAl.YSIS OF BACK-PROPA(;ATION "IIEURAL NETWORKS 

A Ba~k-Propagation Neural Netviork is a mUltilayer, feed -forward network which has 

an input layer. an output layer and at least one hidden layer. Neurons are found in the output 

and hidden Jayer(s), while the input layer has only input connections feeding the neurons in 

the fin( hidden layer. There exists no feedbao:.:k or even intercollnection between neurons in 

the same layer. There is grnerally a bias input for each neuron with an a,sociated non-zero 

weight. A thn:e l<lyer network is shown in Figure 8. It has one output layer anri two hidden 

layers 

In Figure 8, wilj,k) is defu1(x\ as the o:.:olUlenion weight for the path from the]" neuron 

i.n the (i-/)"']ayer to the k""neuron in the i'" layer. It is assumed that the weight vector wiU,k) 

is a constant so that a partial derivative can be rigorously defined [RefS]. Tnen the BNN in 

Figure ~ ~an be represented mathematically as 

2.. 9 



y3", r l(w3_r2(wbr 3(whx + bJ)+ b2)+ b3), 
(3 -5) 

where XV) is the input ve(;tor to the BNN 

In the learning pro(;ess, the BNN adjusts weights wi for all i, to minimize a suitable 

function of the error between the outputy and a desired output Yd where yjt) is the signal to 

be approxirn<lted given the input x(t), t '" J, .... ,N 

Figure 8. A Multii<lyer Neural Network 

The most common errur function used is 

J= !.... E 1)"/18) - yj t)1 2, 
2 ,_1 (3 -6) 



wbcrc yj t) is th~ signa l to oc approximated given the input x( I), t = /" ... ,,\ ' and j 'l"(19) th e 

ou tput of the neural network wilh paramete r lit A general picture of th is mechanism is 

given in riguH': 9. 

The fiNN implements a modification of the grad ient de scent algor ithm to update each 

weigh! at ti me 1+ 1 as follows 

9(t+ 1) := 9 (t) - .u!.. BI e(t)1 21 ! 

2 a8 1m (3-7) 

where Jl > 0 is the learning rate and 8 is the weight ve(;[or and eft):= )<118 ) - y l l ) 

INPUT OUTPUT 
:.:(t) --,---~ NONLINEAR SYSTEM f----,---- y .. d(t) 

+ 
I __ --'-y(c:t) _ _ .~_ 0---+ e(t) 

'-------

Figure 9 . Obtaining the Error in BNN 

A genera l flow diagram for a BNN is given in f igure 10. The algorithm tha t is used 

10 sim ulate the BNN is presented below. The MATLAB codl':s to accomplish this task are 

in AppendLx C. for simulation purposes. a two layer neural network is chosen which is quite 



effective compart:d with three or more layered nrtworks. A sigmo id is used as the nonlinear 

transfer function. 

as 
~j 

b1 

Figure 10. A General Flow Diagram for BNN 

bl 

In order to derive the back-propagation algorithm, the weights, biases, input and output are 

defined as 

22 



The input to the first layer is given as 

(3-9) 

Hence, the output of the firsl layeL v can be represented as 

(3-1(1) 

Likewise, th e input to the second layer is given as 

(3-11 ) 

And the output of the second layer can be given as 

(3- 12) 

So, the output of the network caJ] Ix wri tten as 

(3-1 3) 
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Ine error o.:<l n he calculated as 

e=Y-Yd=d3. (3·14) 

Back-Propagating the error thro ugh the network. the followin gs are obtained: 

d2 " diag (w] ' .d3)*ds;g (z) 

(3-15 ) 

dl " diag (wl'.dl)*dsig (yl). 

Partial differentiation s of an appropriate cost func tion with respect to all weight vectors 

multiplied by a proper learni ng rate are suhtracted from the weight vectors of the 

previo us iteration to obtain the new weight vectors as fol lows: 

wJ" wJ- p * ..!!L"w3-Il(d3*Z') 
awl 

w2 " 11'2 - P • ..!!L" w2 - P (d2,. ~, I) 
aw2 

wl "w/ - p * ..!!L= wl-p (dJ*u ') . 
'wi 

In a simibr way. we can sho w that for the bias terms. 

(3-16) 



b2 = b2-J.l*JL ", h2 - J.l*d2 , 
, b1 

hl = hI- W 3:L = hl - J.l*dJ_ 
' bl 
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IV. APPLICATIONS AND SIMULATIONS 

A. EXPERIMENTING WITH THE BNN DMRAC FOR UNJ(,'10WN MINIM liM 

PHASE SYSTEMS 

In this chapter. the results of the experiments using the BNi\ DMRAC on various 

nonlinear 5150 systems, arc pn:sented, I~our experiments are conducted using sofrv.'aTC 

simulations for the four classes of unknown nonlinear systems o.:onsidered in Chapter JIl. 

The mam purpose of these c)(periments is to see under whal conditions the proposed BNN 

DMRAC works. The software simulation programs used in thest: experiments are listed in 

Appendi)( C. 

Lastly, an experiment for an unknown nonlinear nonminimum phase sySt<:m is 

conducted based on the system Mooel 2 

As slated in [Ref. I], fom important classes of unknown nonlinear SISO systems an' 

considered for direct adaptive control using the B;,\'N, They are modeled in discrete-time for 

analysis and simulation. These are the system models used in [Ref.6] for whi.: h BNN 

indircl:! adaptive control ha, been sllccessfuUy demonstrated. The four mooels are the 

following with r, a continllollS smooth function 

(1)Mili.!ill: .. , 
}'(t+l)=~ Ut y(l-k) +I' [(u(t),u(t-J), ... ,ll(t-m+J)] (4-1) 
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Large mechanical systems, hard nonli neari ties such as input saturation. dead zones or 

backlash are readily described by this modeilReLI] 

y(t .. l )" I' f>1'1),J1'I- 1),. .. ,J1'I- n d )] .. ~ b. u(t- k) (4-2 ) 

The action of viscous drag on an Wlderv./ater vehicle can be modelled by this model [Ref.I]. 

(3) M.2d.tl..3. : 

y(H I) " I' [y(t),J1't- I ),. .. ,J1't- n +/ )] + I' [u(t),u(t - I ) .... ,u(t- m .. I ) ] (4-3 ) 

Underwater vehicles subjected 10 input saturation and viscous drag can be fonn ulaled by 

this model [ReLl). 

(4) ..M2!kl....:! 

y(t .. ! ) = 1' [y(I),J1'I-/),. .. ,J1't-n .. I),u(t),u(t- / ), ... ,u(t - m .. I)] (4-4) 

Bilinear sysleTll~ are part of Ihis model lRef.l j. 

Ex periment 1: System Model I 

in the ftrsl experiment. a nonlinear system described by Model I was (;ontrolled 

by a BNN DMRAC The cho!>Cn nonlinear system is given in equation (4- 1) as 

y(1 .. 1) " 0.3y(1) .. 0.6),(1- 1) .. u(ll + 0. 3 u(tY - 0.4 u(1) . (4-5) 

27 



A(;(;onling to the suggested training procedures. the BN\: was first trained off-line 

The training set made of a randomly generated tra ining input u(t) and the resulting output 

y(t) of the neural network and also the external input ~'(t) and the desired response of the 

system, y .. (l) are shown in Figure II. The Train ing set (;onsists of 10 000 data points each 

for the input and the output measurements. The external input to the system. v(t) is a sum 

of sinusoid s with different magnitudes and frequencies. The BNN was next placed on -line 

to control the system. During the on-line control phase, the BNN recursively learns to adapt 

to the required control structure. The output of the controlled system w mpared to that of the 

refe rence model is displayed in Fi gure 12. The reference modd used in the experiment is 

chosen as 

ym(t) " O.8Y,,/f-i) + v(t -J) , (4-6) 

wher~ v(t) is the external input to the system. 

2. Experiment 2; System Model 2 

in the second experiment. a nonlinear system described by Model 2 was used 

It is governed by 

y(t+i) " y(t)y(t-J) (y (t) + 2.5J + u(l) . 

1 + y(tl + y(t - II 
(4.7) 

Tht: input to the BNN estimator will be the rt:gressor vector tfJ(t) of equation (2- 10). 

if>,.(t) in equation (2- 14) is the input vector during the control phase. The same reference 

mode l and the same procedures for off-line training and on-line control-plus-learning 
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were employed. Tht! BNN estimator was first trained oil-line with a 10 000 point training 

set. The training input u(t) and the resulting outputy(t) of the neural network and also the 

external input, vet) and the desired response, y.,(t) of the system are shown in Figure 13. 

'" 

f;;~~; 
'" ~ 0 
~ " f-

OJ ~ z , 
~' lfl ~ X 

;;l ~ - 5 ---=--~ J ~ 

'" ~ ~ c-5 ,§ :0 
oJ ~ 

t'2,~o r 
z 
Ul ~-
~ 
"- F- 0 ~ ~~' -
0 -F 0 '- ---, ~ 

i: 
~N 

~ ~ 
0 .,. N 0-- N ~o en N 0 

" " 0 o 0 '9 9 

I--~~ 1?8! -! 0 
~ 8 

~ r 
~ ~ 

~= ;; f- c~ § 
::; . 
~ 

~ 

! I ~:~: I' 

~ 
0 
~ " Z ~ ~ 

~ I 3=- 5; ~~~ -
( I ~ 

~ ~~ -
~ N 0 " 

,,0 d g ::; ~ ~-
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Figure:! B. The Training lnput, the Resulting Output, the Extemallnput and the Desired 
R~sponse for the System Model 2 
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rinally, the B"\~ was placed on-line to control, and learn the control structure and 

estimate the parameters simultaneously. As shown in Figure 14, the system with the BNN 

D.vlR.i\C successfully tracks the model rei"erem;e system dosdy. To optimize th~ 

performance of the control system, many different learning parameters and training data 

were tried. However, once a trained BNN works, it tracks the reference model reasonably 

well for the inputs with similar characteristics. 

3. Experiment J: S.\'stem Model J 

In this eXjXrimeilt, a nonlinear system described by Model 3 is chosen as 

y(t+l) ~+u(lr. 
1 + y(IY 

The same procedure" used for the previous experiments were conducted. The training 

input u(t) and the resulting output y(t) of the neural network, and also the actual input 

r(tJ and the desired response y .. (t) of the system are shown in Figure 15. The comparison 

between the aCLUal system output and the reference model output are displayed in Figure 

16 

4. Experiment 4: Syslem Model 4 

In the final experiment. the nonlinear system is governed hy: 

y(t+1) = y(t)y(t /)y(t-2) llil-l) Iy(t-2) + 1] + u(t) 

1 y(t llz y(t 212 
(4-9) 



Other than the order of the system, there is not much change in the input vectors. Once 

again. the same procedures were applied to this nonlinear model. The training input u(l ) and 

Figure l.4 . The OutPUt o f the Controlled System Compared To That of the Reference 
Model for System Model 2 



tht! resulting outpmy(t) of the neural network. and also the actual input v(t) and the desired 

responsey .. (t) an:: displayed in Figure 17. The output of the controlled system compared to 

that of the reference model is displayed in Figure 18. 
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Pigure 15. The Training Input, the Resulting Output. the External Input and the 
Desired Response for the System Modell 
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Figure 16. The Ompul of the Controlled System Compared To Thai of the Reference 
Model for System Model 3 



Figure 17. The Training Input.. the Resulting Output. the External Input and the Desired 
Response for the System Model 4 
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H. EX PERIMENTIKG WITH nn: HN~ DMRAC FOR lll\K."IOWN 

NON\HNIMlIM PHASE SYSTEMS 

In this section. the: 8\.\ DMRAC is extended to nonminimum phase systems. For 

e.x[Jeriment purposes, Model 2 is considered. 

The [Jole placement algorithm [Ref.7J which was used for LTI nonrninimum phase 

,y,;tcms was tcstcd on nonlinear nonrninimum phase systems. Hut the experiment showed 

that nonlinearities affect the results anct cause the system to go unstable especiaUy in thr 

nonminimum phasr casr 

So, it was drcickd not to considn thr pok placrmrnt approach for this case and thc 

BN'N DMRAC is dirtttly appued to a nonlinear noruninimum phase system. Thr simulations 

yirld fairly re,(sonable result, which are displayerl in Figure 19 anct in Figure 20 

The un.known nonlinear nonminimum phase system usect is chosen a, 

y(t+lJ =- y(t)y(t-l) lH't) + 2.5] + u(t) + 2 u(t-l) . (4.6) 
1+y(IY +y(t-l/ 

From the following plots we sec that in some cascs the output of the systcm is able to 

track the desire.d refert:m.:e signal. However, in several TUIlS, the nonminimum phase system 

does nN perfonn as desircct and it might become unstable. The extension of a nCllfal nctwork 

~ontrol.kr to this dass of systems is "tiIl an open problem in the control system literature 
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C. [l\tPLEMENTA nON OF' THE B~N SOFTWARE SIMULATOR 

For this thesis research, a software I3N:\, simulator was developed. Until neural 

network hardware ,ystems or ncurocompmer;; become conmlOnly (and economically) 

available. most researchers will work with software simulators for neural networks. The 

software approach offers the full flex.ibity for development allowing the user to exercise and 

experiment freel y with the variolls fe atures of the nellfal network [Ref. I J The main 

drawback of this approach is the slow learning process of the simulator. 

By using the appropriate MATLA131 codes, the following functions have been 

developed and used in simulations: 

network 

* )\.l£T 2: This fum.:tion sets up the data structure for a 2 layer BNN. It take, as inpm 

* SIGMOID : This fUllction introduces the nonlinearity to the neural network 

'" DSIG : Thi, fllnctio n la.kes the derivative of the sigmoid function 

"lATLAB is a registcred trademark of the .vlath Work,. Inc 



These functiuns can be all implemented recursively, and imbedded in any iterative 

luup_ The source codes of these functi ons used in this thesis resean.:h are provided in 

Appendix C 

42 



V. OBSERVA nONS, DISCUSSIONS AND CONCLUSIONS 

A. SIJM!\IARY 

A Direct Model Reterrllce Adaptive Controller (O\;lRAC) for LTI systems was 

developerl and applied to both minimum phase and nonminimurn phase LTI systrms for pole 

placement. The DMRAC for Lll systems was then extended to nonlinear systems by 

training a fiNN to emulate a suitahle nonlinear regression for m that describes the system 

under l'onsideration 

Later. the control of fou r general c laSSI:S of unknown nonlinl:ar systems, modelled in 

disnete·time. using the BNN DlvtR)\C was considered. Lastly. an I:.\periment for unknown 

nonl inear nonminimum phase systems was conducted 

B. OBSERVATIONS, DlSClJSSIONS A:\,D COj';CLI)SIO~S 

A Of'l.1J{AC designt"-d with a least-squares estimator. assuming the system is LTI. failed 

to work for most nonlinear systems. Hence. the fiNN DMRAC is an effective technique in 

(;ontro llin g nonli near syStl:ms where thl: conventional u:chnique fails 

Samr experiments conducted showed that the BN'N DMRAC performs its control 

fun('(ion reasonably weI! for various types of inputs. However, for in puts with high 

fretjuenl'y componenL~ (with respect to the sampling rate). the controlled system became 

quite oSl-i llatory. so thaI it would not hi: able to track thl: rderence model properly. In 

addition, the controller \,,-ould sometimes saturate during training and therefore it failed to 
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(antral tht: system [Ref. I] . It is suggested that the solution to this problem is to increase th e 

sampling rate with or wi thout in,Teasing the number of neurons and hidden layers used in 

the 13NN. Off· line rraining with more appropriate data (i.e. rraining signals containing 

similar heq uency characteristics as the actual signals experienced by the controlled system) . 

and adjusting the karning parameters also helps to improve the tracking performance and 

avoid saturation (Rd.!]. Unfortunatt:ly. there is still no ge neral rule to help select Ihe most 

appropriate learning parJmelers. Henct:, a great deal of experimentation is usuaJly required 

The BNN DMRAC designt:d for unknown nonminimum phast: systems is not 

promising comparrAl with their minimum phase countapart. A nonminimum phase system 

is usually hard 10 stabilize adaptive1y by a dire!.:t approac h. 

C. FURTHER RESEARCH AND DEVELOPMENT 

In this tht:s is research, the emphasis was to develop a structure for direct adaptive 

control of ct:rtain classes of unknown nonlinear systems using the BNN. 'I ne results of the 

experiments clearly showed that the BNN DMRAC is vel)' efft:ctive in conrroll ing unknown 

nonlinear systems. On the otht:r hJnd, nonminimum phase systems at the moment do not 

yield satisfactory results and need more research efforts. 

Once more, in the design of the BNN, the selection of the number of layers, neurons. 

the type of non linear transformation, etc. is still at the discretion of the designer. Thi s area 

definitely needs further research. 
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APPENDIX A 

DMRAC DESIGN FOR lI1'KNOWN MI1'IMlIM PHASE LTI 

SYSTEMS 

In this Appenrl ix we adrlres<; the problem of designing an adaptive controller tor a LTI 

systl:m bils t d on the algebraic approach. The unknown L TI system to he controlled is 

de.<;u·ibrd by thr followiug volynomial operalor, 

/\(q) ql _ 0.2q + 0.9, 
lA-Jj 

R(q) -= 3q. 

In order to Irack the reference model 

thl' cte ,ired cio<;ed loop polynomial. p.(q) and (he (.:haral;t~ri~ti(.: ]XJlynomial of the 

obsrrvrr. mg) me chosen arbilrarily and with loots in the stabk re gion as 

rig) = !..3q(g - U.8) = q(g U.S), 
J 

rJ.(g) =- g ' - g + 0.25. 

Using the algoritlun in Chapter I Section B. the Diophantine t quation can he formed 

as Iollov,'s: 
(h,q+h)(q"_O.2q+O.9)+(k/q+k})3q = (q2-q+0.2S)[q-O.2q+O.9-q(q 0.8)\ 

1.-\-4) 
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The MATLAB simulation for the above system yields the following steady-state gains 

hI = 0.61234, 

hl '" 0.24935, 

kl = 0.05678, 

kl = - 0.42982. 

These results can he checked by usi ng the Sylvester matrix fonnu lations for this 

sys tem whic h in this case is given by 

[-:'2 
0 0 0 h, 0.6 

I .l 0 h, 0.3 

0.' -0.2 0 3 k, - 0.75 

0 0.' 0 0 k, 0.225 

By solving eq uation (A-6) we obtain the following values: 

hI " 0.6, 

hl = 0.25, 

k, " 0.0567, 

kl " - 0.4133. 

(A-6) 

Hence. the estimated gains needed to contro l the system are fo und to be very close 10 

the stead y-state gains obtained fro m the Sy lvester matrix equations 
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The simulation resulL~ of the experiment for the system above are displayed in Figures 

(A·I)thru(A·3). 

~ § 

~-~ 
g ;;: 

==---: iii iii 

i(1 

--=:J i2 OJ 
i2 i;; 

~ ,-- ~ 
f- -~ i3 ~ r ii: " -l ? 

'" c- ~ 0 ~ 
'" s ~ 

'" 
0: r OJ U ~ Z ::; 

~f~ 
::; 

OJ i= 8 :;; 

~r 
i= 0: 

E " Cl 

'" 
~. 

0: 

L-=::J 
~ 

:;: ::; 

'LJ 
!;; 

~~ =:J 
OJ 

" 
~-=:J " 

.~ 
~ 

I 0 ,)? 
0 ~ 9 

3Gn.LINDVW 3ClfUIN0VW 

Figure A-l. Reference Input and Estimated Control Parameters for LTI Minimum 
Phase Unknown System 



s ~. -~~-8 ::;::::" / -

~ 
~ 

:;: 

~ 
:;: 

§5 §5 

< " ;/ i2 

~ :;: 
i2 

~ I~ 
-', .-/ ~ ~ 

~~ ~ ~~ 
oj 

s: s: ~ g ~~ Ul Ul 
:E 

~~ 
:E 

;;l ~-~ ;:: ;:: 
Z / " " r; '" ./ 

:;: ~ > 0 

6~:~~ '" ~ '" 
:2 ~. :2 

/ 

00 
I 

,,0 

30rulNDVW 3QruL"JDVW 

Figure A-2. The Signal To Be Followed and the ACtual Output For L n Minimum 
Phase Unknown System 



~§ 

-0::::-._ 

.- -:;: 

- .C-~=-~~_ 

~ - !;! 
.... 

~ :0 

~ --;:0--0 ~ i2 
0 

~-= 
...l 
«: .:0 :0 .-
~ -. 

~-:;--'" -:;: -
'" ..'. -= :1 

---~ F 

~ 
-. .'if 

5 ~-.:::----

~ --:'---:0--0 

j: :0 
~:;:-. 0 

-~-----
0 

-~ OJ 

'" iTI --::::::"'"=--=::--

I ~ 0 --.-_/ 

"' I --, 
~{=' 

30ffilN0VW 

Figure A-3 . Desired Output vs Actual Output For LTI Minimum Phase Unknown 
System 



0/, o/~W%%%%%%9'o%%%%%%%%%%%%%%%%%%%%%%%%O/C%0(,,%%%%%,X.'!'< 

'7" 

~;, A DMRAC DESIGN FOR UNKNOWi\ MINIMUM PHASE L TI SYSTEMS 

I dd * .md 

clcar,elg.ck: 

'X Generating the reference input signal 
t=Il: !IlIl; 

for i= l:k max- l 

l:nd 

'1, Initialization of thc parameters 
ll=zcros( l.kmax ): 
llhar=z~tos( l,kmax) ; 
v=zaos( l .kmax J; 
yhar=zerns( l,kmax }; 
vm=zcros( I ,kruax); 

ih=zeros(5.kmax) ; 
th(S.41=O.I: 
P= IIl()()()*eye(5); 

c;,. Gen~rating the referenc~ model 
fill j=2:k.rnax- l 

'1, D~signing the controller 
for k=4 :kma:\- 1 

least squares estimates 

50 



u(i )=( h I + I )- u(k- l )+(h2 -0.25 ) 'u(k-l)+k I · y{k-! }+k2 · y(k-2)+, .. 
(v(k )-v(k-I)+O.2S *v(k.2j)"ibl: 

uhar(k J=u(k-IJ-u (k-2 )+O.2S *u(k-3); 
y(k )=O.2*y(k- 1J-O.9*y(k-2 )+3 +u(k-I ); 
ybar(k):y(k)-l.~· y(k- I)+ 1.05* y(k -2 )-0.2* y(k -3); 
phit(k,: J=[u(k-2) u(k-3) y(k-21 y(k-3) ybar(k)J: 
K (: .k)=(P* phit(k. :)')/( I +phit(k,:) *P 'phit(k,:),); 
p= p-(p . phi1(k.: )' *phit(k,:) 'P)/( I + phil(k.: )* P*phit(k.:) ') ; 
th(: .k + I )=th(:.k )+ K{: .k )*(ubar(k )- phit(k.: )*th(: ,k)): 

eo' 
'i: Plotting th~ r~sults 
subplot(21 1) 
axis([O!OO-O,lU)): 
pJllt (v( I,l : IO()); 
[11h;: ('REFERENCE INPUT v ( t)') ; 

:dilhdnlME ( S<':c. )'); 

ylahcl( 'MAGNlTUDE'I ; 
gnd,pause 
~XIS 

dear ! 

1= 1: \00; 
suhp)OI(2 12) 

plot(t.th ( 1.1: 100),I,[h(2, I: 100),t, lh(3.I : JOO),Uh(4,1: 100), ... 
t,th(5,1:IOO» : 

titie("EST1MATED COI\'TROL PARAMETERS'); 
x!<lod("T1ME (Sec)"): 
ylaod('.vtAGNlTUDE'); 
grid 
glext( 'hl'l: 
gtt!xt(' l/bl "); 
gtextCh2') : 
jitcxt("k l"); 
~tt!xt('k2 '): 

pause 
meta I 
dg 
suop!llt(21 1) 
pl"t(ym(l .l :IIIII»: 
li lknHE $IG;.JAL TO BE FOLLOWED'); 
xlabd(TIME (Se(;.),); 
ylaod('MAGN1TUDE' ); 
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plOllY( 1,1 : [UU»): 
titk(THE (lUTPUT OF OUR PLANT'); 

( -- I vs ACTUAL OUTPUT ylt) ( **1 '): 
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APPENDIX B 

DMRAC DESIGN FOR UNKNOWN NONMINIMUM PHASE 

LTI SYSTEMS 

In this Appendi)\ we address the problem of designing an adaptive controlkT fo r a 

nonminimum phase L'Jl system based on the algebraic approach. The unknown L TI system 

to be .:o ntrolled is described by the following polynomials 

A(q) " q l .. q .. J, 
(8 -1 ) 

B(q) " q"Z, 

wh ere A(q) is stable and monic . and B(q) is monic and causes the system to be 

nonrninimum phase_ In order to nack the reference model 

y,.,W - 0.8Y",(I- 1) " v(t-1), (8-2) 

the desired closed loop polynomial, P"(q) and the characteristic polynomial of the 

observer, a(q) are l"hosen arbitrarily as 

r(q) = (q - 0.8f, 
(8-3) 

f1. (q) " ql_ q .. O.l5. 

Using the algorithm in Chapter I Section C. Ihe Diophantine equation ca n be formed 

as foUows: (8 -4) 

(h,q" h1)(q l .. q .. J) -1" (kJq .. k1)(q" 2) (ql - q ... 0.25)[q l .. q ... J - (ql - J.6q" 0.64)[, 
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Also, p·(q)l1(q) is obtained as 

(ql _ q + 0.25)(q2 _ 0.8q + 0.16) " q4 _ 1.8q J + 1.21q 2 - 0.36q + 0.04. (8-6) 

The MATLA B simulation for the abovc systcm yields thc follow ing gain s. 

h, 1.7927 

h, 0 -2./21 

k, -0.6/84 

k, /./666 

b, 0.0000 

b, -0.6642 

<, 0.6642 

<, 0 0.3358. 

wh~r~ b" bz. c, and Cz are the coefficicnts of the polynomia ls b(q) and c(q) r~spectively 

These results can be checked v..ith Sylvester matrix solution for this system which can 

be written as 

i:ll 0 0 0 h, 
/ I 0 h2 

/ 2 I k, 

1 0 2 k2 

I.B 

- 0.96 

-0.39 . 

0.21 

(I3-7) 



By so lving equation (B·7) we obtain the following values 

", = 1.8, 

"2 = - 2. 15, 
kj = - fJ.6J, 

kl = 1.18. 

Hence. the e,timated gains needed to co ntrol the sy<,tem are found h.J b<:: very dos(' 

to the gains obtained from Sylvester matrix equations. in fac t. only h , . h, . k , and k ) are 

needed in the contro l phase wh ile b l • bi • c1 and c1 are needed on ly in the estimation phase 

of the entire design proc~ss 

j" h~ sim ulation results of the experiment for the system above are displayed in Figures 

(B· l ) thru (B·3) 

The experiment then, is conducted for an unknown non minimum phase and unstable 

L T l system. It is observed that ute algorithm flfst stabilizes the syst('m with the adaptive pole 

placement process and then provide;; the necessary input to track the desired ref~rem;e 

signal. The n:sults of th is experiment for the nonminimum phase and unstable system are 

displ ayed in Fi gur~s (8·4) thru (8-6). For the experiment A (q ) is chosen 10 he as follow, 

A(q) = q l + q + 2. (8,>; j 
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3an.lIN9VW: 

Figure B-6. Desired Output vs Actual OutPUt For L TI Nonminimum Phase Unknown 
Unstable System. 
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'X 'X 'X,%%%%%%%%%%%%%%%%%%'X.,%'7<,%'X_'%%%'7<,%%%%%%W'7o%%'Ycok n;, 'k 

'X A DMRAC DESIGN FOR UNKNOw:,\' NONMINIMUM PHASE LTI SYSTEMS 

'X Experimenting with a stable system 

'};-<;r "X·%%9c%'!<.'%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%'X'%%'jf;<;I,?' 

del *.met 
clear,clg,clc 

7. Generating the reference input signal 

w= IO()(lIl; 
t=():w; 

v=squ;1re( tJ( 40*pi»; 

'X Initialization of the parametds 

lIbar '-'ZdOS( 1 ,kmax); 
uF=z,~rOSII ,hlnax); 
uf rnin l=zeros( l,kmax): 

';~, Gen<:rating tllB refer~nc<: model 

f\1ri =2:kmax- J 

ym(i);(UI *ym(i- 1 }-t-v(i-I); 



% Designing theconlroUer 

IDr k=6:k.mall -] 
hl=lh(l.k); 
h2=lh(2 ,k): 
kl=lhn .k ); 
k2 =lh(4.k ); 
bl=lo(5.k); 
b2=lh(6.k): 
cl =th (7.k ): 
c2=lh(8.k); 
u(k )=(h I + I )*u (k- l J+(h2-0.2S)*u (k-2J+k I *y(k- I )+k2 · y(k-2)+v(k)-v(k- l )+0.25 · v(k-2); 
ubar(k)=u(k-2)-1I(k-3l+0.2S *u(kA) : 
uF(k)=u(k }- I .R "u(k- J J+l.21 "u(k-2)-O.36*u(k-3)+O.04*u(k-4); 
uFmm I (k l=u(k- l )-1 .8 "ll(k·2)+ 1.21 ·u(k-3 )-0.36 *u(k-4)+O.04 " u(k-S); 
y(k l=-y(k-I)-y(k.2)+u(k-I}+2 · u(k -2); 
yF(k)=y(k)-I .R· y(k-l l+I.21 *y(k-2)-O.36*y(k-3)+O.04"y(k-4); 
yFmml (k)=y(k-I )- I.S*y(k -2l+1.21 "y(k-3)-U.36 *y(k-4l+O.04*y(k-Sl; 
phit(k.:}=[u(k-3) u(k-4) y(k-3) y(k·4) uF(k ) uFmin I(k) yF(k) yFmin 1 (kl] : 
K( :.k J=(P·phil(k. : n/( I +phit(k,:) 'P'phit(k, :)') ; 
p=p.(p* phit(k,: )' *phit(k,:) *P)/( I +phit(k ,:) · P*phit(k,:)'); 
th(: ,k+I)=th(:,k)+K(:,k)*(ubar(k)-phit(k.:)*th(:.k» : 

t:nd 

'A Plotting the results 
suhplot(211) 
axis«O W -I .S I.S)); 
plot(v(I.I:w)); 
tilk(,REFERENCE INPUT v(I),): 
:<labc l(TIME ( S~r.)'); 

ylabcl( 'MAGt'.'lTUDE·); 
grid.pause 
aXIs 
clear I 
subplot(2 12 ) 
t=l: w; 
pllll{ I.lh( 1.1 :w),I.lh(2.1 ;w). 1,th(3, 1 :w),t.th(4, I :w) •... 

l.th(5.1 :w),I.lh(6, I :w),t.th(7.1 :w)J,lh{8. 1 :w » ; 
[][lel 'ESTIMATED CONTROL PARAMETERS') ; 
xlahd ('TIME (Sec.)'): 
y labcl('MAGNITUOE'); 
!.'rid; 
gtext ("h I' j: 

gtext('k2' ); 
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pallS," 

fliela ltl 

vs ACTIJAL OUTPUT y(t){ ++1'); 
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,;: A DMRAC DESIGN FOR U;-;KNOWN ;-;O:\b1I\lMUM PHASE L TJ SYSTEMS 

'I, Exrwrim~nting witil a unstable system 

: del *.met 
cltar.clg,cll: 

'ri Generating tile reference input signal 
w= IOUi){l; 
1={):W ; 
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y(k)=-y(k-l )-2 ·y(k-2)+u(k.1 )+2*u(k-2) ; 
yF(kl -'-y(k)- 1.8*y(k-I )+ 1 21 *y(k-2)-O Jo·y(k-J)+004 ~y(k-4); 

yFmin I(k) -'-)'(k-I)-l 8*y(k-2)+ 1.21 *y(k-J)-O Jo·y(k-4)+O 04*y(k-S); 
phit(k. )=[u(k-J) u(k-4) y(k-3) y(k-4) uF(k) ufmin 1 (k) yF(k) yFminl(k)]: 
K( •. k )=(P*phit(k. : n/( I +phit(k,:)* P* phit(k. )'); 
P=P-(P·phit(k .• )'*phit(k .• )*P)I( I +phit(k,: )*P*phit(k, . )'); 
th.( _, k+ I )=th( . ,k )+K( .,k)*(ubar(k)-phit(k, :)*th( :,k»; 

end 

% Plotting the results 
subplot(21 1) 
axis([O w - 1.5 l.5]) 
plot(v(l,l.w»; 
title('REFERENCE G\'PUT V(I)'}; 
xlabel(TIME(Sec.),); 
ylabdCMAGNITUDE'); 
grid,pause 
aXIs 
cleart 
subplot(212) 
t=lw; 
plot(t,th( I, l· w).Uh(2 , IW),t,thO, I w),t.th(4, I w). 

t,th(5 , I w)_Uh(6, I W),t,th(7, 1 :w).t,th(8.1 :w» ; 
title( '£STL\1A.TED CONTROL PARA..!\IETERS'); 
xJabcl('TlMI (Sec,) '), 
ylabel('MAGNlTUDE'); 
grid; 

: : ;~:::r:; :;~:~~:~~,;,!~:~i~~'0;, 
pause 
meta lb 
dg 
subplol(21 I) 
axis([O W - 10 10]); 
plot(ym( I. 7w»); 
tit le(THE SIGNAL TO BE FOLLOWED'); 
xlabelC'TIME (Sec n 
ylabe1t·MAGNlTLUE'). 
grid,pause 
suhplot(212) 
p lot(y(]. I 'w»; 
t itle('THE OUTPUT OF OUR PLA:'\T): 
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xlahel('TIME(Sec),), 
ylabe1('~1AGN1TUDE'), 

grid.pause 
meta2b 

ciS 
axis([Ow-66]), 
pIOl(ym(l.l w», 
hold on 
plot(062S · y(U w),'+'), 
plot(062S -y(1.! w», 
title('DESLRED OUTPUT ym(t)j-- ) vs ACTUAL OUTPUT y(t)'l++!), 
xlabel('TlME (Sec)'). 
ylabel(,MAGNITUDE'); 
grid 
hold off 
meta3b 
axis 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

67 



APPENDIX C 

BNN SOFTWARE SIMULATOR 

0/, %o/(%%%%7£o/, ·%%%%%%%%%%%%%%%%%'70o/c%%%%'lc%%%%o/c%'7c'X%% 

'70 SOFTWARE SIMULATOR FOR BNN 

~lc%'X '1 %%%'7c %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%'70'70%<Jr 

! del ".met 
clear.clg,clc 
land( 'normal'); 

'k Random input to train the system. 
num= 15000; 
u I =rand( 1 ,num): 

k=O:nurn: 

eod 

'Ie Initialization of the neural m:twork. 



[w3 .w2.hLw I ,b I j=ini!ia12(I , 18. IS.5); 

% Training [he ne ural network 
for !=4:kmax - l 

1k Plots of the desired signals 
,ubplot(22 1) 
axis([O 200 -4 4Jl; 
plo!(u I ( I :200)): 
tille('RANDOM ["'PUT); 
grid 

subplot(222) 
axis([O 200 -4 4]); 
plol(Ulm I (1 :2(0)1: 
litk('OUTPUT OF HIE NE URAL l\.'ETWORK'); 
grid 

subplot(2231 
axis([(J 1000 -0.1 0. 1]); 
plol(v(l: 1000»; 
!itlc (' tNPUT): 
grid 

suhplo!(224) 
Jxis([O 1000 -0.4 O.4J): 
p lot(ym( 1: IO(){)) 
til1cCDESJ RED RESPONSE'); 
grid.pause 

Cic Controlling the plant with a neural identifier-controller 
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for t~4 :9999; 

0/( Ploting the results. 

subplot( 111) 
n=I :99':1; 

axis([O 1000 ·0.0 0.6]) : 
pJot(n,ym(l, l :<)':I9),n,y( 1, 1 :999) .'); 
title('DESIRF.D OUTPUT (-- ) vs ACTUAL OUTPUT ( . )'): 
grid ,pause 
metahh 

'!cri9c%%%'7c%%%%%%%%%%%%%%%%%%%%%%%%%Cfc%%%C/,%%%'7(.% 
'i('7c 'lc 

'k 
'.lc BN:-J D\1RAC \"lITH UNK.NOWN NONLc\"EAR NONMTNlMUM 
q PHASE SY STE :v1 

o/co/r%'7c iJc%%'k'ko/c%%%%%%%%%%%'70%%'!; ,%%%%%%'ko/c-%%%%%o/r%%% 

! del "' .met 

dear.clg.ck 
ranct( 'normaJ') : 
'7r Random input to train the system. 
num"" 1 000: 
ul =rand( 1.500000): 
k==O: nu m : 



y:zeros(l.kmax - I): 
utml=zeros(l,kmax-l): 
mu=O.099: 
for i=2:kmax-1 

ym(i)=O.S*ym(i -1 )+v(i- I ): 
eod 
for j=2: kmax - 1 
<kmodel2 
y(j+ I )=(y(j)*y(j-l )*(y(j)+2.5)/( I +y(j)"2+y(j- 1 j"2»+u I (j)+2*u J (j-l); 
o/cmodel3 y(j+I)=y(j)/( J+yU)"2)+u 1(j)"3: 
%model4 y(j+ I )=(y(j)*yV- J )"'"y(j-2)*u I (j- I )*(y(j-2)+ I )+u I (j))/( J +y(j-I ),,2+y(j·2),,2): 
%modell y(j+ I )=0.S*y(j)+O.4*y(j·l)+ ul (j)"3+O.3 *u 1U)"2-0.I*ul(j); 

eod 

'k Initialization of the nellral ne twork. 

[w3,w2.b2,w I.b 1)=i nitiaI2( 1.20.20.5): 

'* Trai ning the ne ural network. 

for t=4: kma:'t - 1 
u=[ul(t-2) u l(t-3 ) y( t-2) y(t-3) (y(t)-O.S*y(t- J» ]'; 
utm I (t-I )=net2(w3 . w2.b2. wl,b I ,u): 
r w3. w2.b2. w I.b Il:bp2(w3. w2,b2. w I ,b I ,u,u I (1- 1 ),mll): 

eod 

% PIOIs of the desired signals 

subplol(22 1) 
axis([0200-44]): 
plol(ul(I:200»: 
tille(' RANDOM INPUT): 
grid 

subplot(222) 
axis([0200 -44)); 
plot(utml( I:200»: 
lille('OUTPUT OF THE NEURA L NETWORK '); 
grid 

subplot(223) 
axis([O 1000 -0.1 0.1]); 
plot(v( I :1000)): 
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til le('lNPUT") ; 

f'rid 

% Controlling th~ plant with a neural identifier-controller. 

clear y 
cl~ar t 

a)(is([O 1000 -0.60.6)); 
plotln,ym( 1.1 :999).n.y( 1.1 :999),'. '): 
titl~('D ESLRED OUTPUT ( -- ) vs ACTUAL OUTPUT ( . )'); 
gricl ,pause 
metahh 
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7t%%%%%%%'7<%%%o/cO/O%O/c%%%%%'Yc%%%%%'!'c%9'c CIc%%%%Ck9c%%% o/c%o/, % 

% 
function [\V3,W2.b2,W 1 ,b 1 J=ini tiaI2(ny.J'v12,M l,nul 

(Ic initializes the nC llrai network 

'k 

cod 

h2=rand(M2,J ): 
b J=rand(Ml ,J ) 

,!{ ,'",v,' 'k%%"70%%%%%%%%'k%%%%%%%o/co/vo/vo/vo/,%%%%%'k%%'k'k''7<o/c'7£%% % 

funL'lion y=net2(W3,W2,b2,\\'l,bl,u) 

sets up the data structure for 2 layer neural network 
u-mput. y=output 

q W=v.'cights, b=biasl;.':s 

'k 

functi on [W3, W2,b2,W 1 ,b 11=bp2(\V3,\V2,b2,W l,b I ,u,yd,nlu) 

'k 
'7< updates the weights and the bi ases of a 2 layer neural network with ba~kpTopa glllion 

7c 

'Ie yd 
(it mu is the learning rate 

vh=W1"u+bl: 
zb=\V2 *v+b2: 
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y",W3*z: 
e;y-yd: 

d3=c: 

W3=W3-mu*d3*z'; 
W2=W2· mu*d2*v': 
WI=WI -mu"'dl*u ': 

b2=b2-mu*d2: 
b l =bl·mu*dl; 

%o/ro/cck%%%9r%%%%%%%%%9'c%%%%%%%%%%%%%%%%%%%%'7c%%%%'1c 

'k',7,;'1c%%%%"k%%%%%%%%%%%%%%%%%%%%%%%%'Yv%%<'!c%%%%%%%'k 

fundion y=sigmoid(x) 

o/c introdm:es the nonlincarity 10 ncuralnclwork 
q 

<;{'7r'7Co/C~I(%~7c'7c'Y",(k%%~k%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%O/C 

'Tc',y%st%'7c9<%%%%%%%%%%%%%%'7c%%%%%%%%%%%%%%%'l%%%%%o/c, 

function d=dsig(x) 

'Tc takl:~ the derivative of sigmoid 
'Ie 
9c x is a vector 

x=rnintx, IOO); x=max(x.- IOO): 

temp): 

'It. '1< CJ,,'k%%%'7,,%% %%%%%%%'i'c.'7o%o/c%%%%%%%%%%%%%%%%%%%%'l'< 'k.o/r 
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